Apple's Chip Partner TSMC Shares Details on 7nm Node and Advanced InFO Package Process for 2018

tsmc logo newAt the Open Innovation Platform Ecosystem Forum in Santa Clara on Wednesday, chip foundry TSMC provided an update (via EE Times) on the progress of its forthcoming technology nodes, several of which would be candidates for upcoming Apple chips. Most notably, the company's first 7-nanometer process node has already had several tape-outs (finalized designs) and expects to reach volume capacity in 2018.

TSMC's 10 nm node, which first showed up in Apple's A10X chip in the iPad Pro, followed by the A11, has been fraught with issues (paid link) such as low chip yield and performance short of initial expectations. TSMC looks to change its fortune with the new 7 nm node, which would be suitable for the successor to the A11 chip given current timelines.

In addition to the 7 nm node, TSMC also shared information on the follow-up revision to this node, dubbed, N7+. Featuring the long-beleaguered Extreme Ultraviolet Lithography (EUV), the revision would promise 20 percent better density, around 10 percent higher speeds, or 15 percent lower power with other factors held constant.

While EUV has faced delays for over a decade at this point, it seems to finally be coming to fruition, and a 2019 volume availability update would allow Apple to update its chip process in subsequent years yet again. Apple had previously updated process nodes with every iPhone since the transition to 3GS before being forced to use TSMC's 16 nm node in consecutive years with the A9 and A10. Moving forward, that annual cadence is again in jeopardy as chip foundries deal with the realities of physics and minimum transistor geometry sizes.

TSMC also unveiled some low power and low leakage processes that are suitable for Apple's other custom designs, such as its line of wireless chips like the W1 and successor W2. TSMC is targeting availability next year of a 22 nm ultra low leakage node, which is suitable for analog and RF designs such as cellular basebands or Wi-Fi chips.

This will ultimately help Apple further lower power consumption on the Apple Watch and headphones featuring the W line of wireless chips. It is also likely to be adopted by Qualcomm for its line of modem products. The W1 and W2 manufacturing processes are not currently publicly known, but it is likely that one of TSMC's RF-focused processes powers the Apple chips.

Finally, TSMC announced a revision of its integrated fan-out packaging process (InFO) that is targeted at integrating high bandwidth memory (HBM) into the assembly, dubbed InFO-MS. HBM has generated a lot of interest from applications where very high sustained memory bandwidths are desired, such as consumer graphics cards.

HBM and similar standards such as Wide I/O promise not only to improve memory bandwidth, but also improve power consumption for a given bandwidth, making it a suitable evolution for mobile SoC designs. This type of memory interface has yet to appear in a mobile design, though it should be considered a near-term eventuality. Despite advances in mobile memory, it still lags behind desktop and laptop systems in total bandwidth, which can be important in some tasks such as graphics rendering.

Tags: TSMC, W1, A12, W2
Related Forum: iPhone

Popular Stories

iPhone SE 4 Vertical Camera Feature

iPhone SE 4 Production Will Reportedly Begin Ramping Up in October

Tuesday July 23, 2024 2:00 pm PDT by
Following nearly two years of rumors about a fourth-generation iPhone SE, The Information today reported that Apple suppliers are finally planning to begin ramping up mass production of the device in October of this year. If accurate, that timeframe would mean that the next iPhone SE would not be announced alongside the iPhone 16 series in September, as expected. Instead, the report...
iPhone 17 Plus Feature

iPhone 17 Lineup Specs Detail Display Upgrade and New High-End Model

Monday July 22, 2024 4:33 am PDT by
Key details about the overall specifications of the iPhone 17 lineup have been shared by the leaker known as "Ice Universe," clarifying several important aspects of next year's devices. Reports in recent months have converged in agreement that Apple will discontinue the "Plus" iPhone model in 2025 while introducing an all-new iPhone 17 "Slim" model as an even more high-end option sitting...
Generic iPhone 17 Feature With Full Width Dynamic Island

Kuo: Ultra-Thin iPhone 17 to Feature A19 Chip, Single Rear Camera, Semi-Titanium Frame, and More

Wednesday July 24, 2024 9:06 am PDT by
Apple supply chain analyst Ming-Chi Kuo today shared alleged specifications for a new ultra-thin iPhone 17 model rumored to launch next year. Kuo expects the device to be equipped with a 6.6-inch display with a current-size Dynamic Island, a standard A19 chip rather than an A19 Pro chip, a single rear camera, and an Apple-designed 5G chip. He also expects the device to have a...
iPhone 16 Pro Sizes Feature

iPhone 16 Series Is Less Than Two Months Away: Everything We Know

Thursday July 25, 2024 5:43 am PDT by
Apple typically releases its new iPhone series around mid-September, which means we are about two months out from the launch of the iPhone 16. Like the iPhone 15 series, this year's lineup is expected to stick with four models – iPhone 16, iPhone 16 Plus, iPhone 16 Pro, and iPhone 16 Pro Max – although there are plenty of design differences and new features to take into account. To bring ...
icloud private relay outage

iCloud Private Relay Experiencing Outage

Thursday July 25, 2024 3:18 pm PDT by
Apple’s iCloud Private Relay service is down for some users, according to Apple’s System Status page. Apple says that the iCloud Private Relay service may be slow or unavailable. The outage started at 2:34 p.m. Eastern Time, but it does not appear to be affecting all iCloud users. Some impacted users are unable to browse the web without turning iCloud Private Relay off, while others are...
iPhone 17 Plus Feature Purple

iPhone 17 Rumored to Feature Mechanical Aperture

Tuesday July 23, 2024 9:32 am PDT by
Apple is planning to release at least one iPhone 17 model next year with mechanical aperture, according to a report published today by The Information. The mechanical system would allow users to adjust the size of the iPhone 17's aperture, which refers to the opening of the camera lens through which light enters. All existing iPhone camera lenses have fixed apertures, but some Android...

Top Rated Comments

Piggie Avatar
90 months ago
all it freaking takes is 10 minutes of Jony's time to redesign TSMC's horrid logo. is it that hard?
You want a black notch at the top of the logo ?
Score: 21 Votes (Like | Disagree)
zakarhino Avatar
90 months ago
all it freaking takes is 10 minutes of Jony's time to redesign TSMC's horrid logo. is it that hard?
You want a black notch at the top of the logo ?
Saved Jony the time of mocking up:

Score: 13 Votes (Like | Disagree)
farewelwilliams Avatar
90 months ago
all it freaking takes is 10 minutes of Jony's time to redesign TSMC's horrid logo. is it that hard?
Score: 10 Votes (Like | Disagree)
whiteboytrash Avatar
90 months ago
all it freaking takes is 10 minutes of Jony's time to redesign TSMC's horrid logo. is it that hard?
I was thinking the same thing! That logo is straight out of 1972.
Score: 6 Votes (Like | Disagree)
Exponent Avatar
90 months ago
I was thinking the same thing! That logo is straight out of 1972.
I've been a customer of TSMC for over 15 years, and I love their logo: that's what we use TSMC for, to get a wafer back, and we better be aware of yield! (Represented the black -i.e. unworking - squares in the wafer.)

As a matter of fact, I was at this conference Wednesday, and a tool vendor concerned with yield made the point that changes in the logo represent (forgetting exact percentage) a 20% increase in yield over the past 10 years :)
Score: 6 Votes (Like | Disagree)
layte Avatar
90 months ago
And yet Apple ships a SoC that is basically the same size as, say, a Kaby Lake dual processor, faster (single and multithreaded), uses less power, has better GPU performance, and includes a whole ton of OTHER useful stuff (like ISP and NPU).
So what exactly is that supposed Intel process advantage getting you? It doesn't result in smaller (or cheaper) chips, or better performance, or more functionality, or lower power.
The ONLY thing it seems good for is producing slides for fanboys.
Faster at Geekbench, which I suppose is cool if you want to run that and nothing else. https://www.pcper.com/reviews/Mobile/Microsoft-Surface-Pro-2017-vs-Apple-iPad-Pro-2017-Best-Productivity-Tablet/Performanc
Seems the performance is not there if you run something other than simple synthetics.

I'd suggest having a read of this if you want to educate yourself on where the different foundry processes currently sit, as the number they stick on it doesn't count for much.
https://www.semiwiki.com/forum/content/6713-14nm-16nm-10nm-7nm-what-we-know-now.html
Score: 5 Votes (Like | Disagree)