prod merc aura pro express6gOther World Computing, which offers many customization and upgrade options for Macs, today released an SSD upgrade for 2011 MacBook Airs that takes advantage of the MBA's SATA Revision 3.0 abilities and offers 6 Gigabits of potential throughput.

The factory SSD from Apple only supports SATA Revision 2.0, which maxes out at 3 Gbps, half the speed of Revision 3.0.

The new OWC Mercury Aura Pro Express 6G SSDs combine award-winning SandForce technologies and Tier 1/Grade A Toggle Synchronous NAND to deliver data rates that are more than 3x faster and capacities that are up to 4x greater than factory available SSD options. Currently available in two sizes–120GB and 240GB–the new 6Gb/s SATA 3.0 Revision models continue OWC’s position as the only alternative to factory SSD options for the 2010-2011 MacBook Air.

The upgrades don't come cheap, however. The 120GB version is $349.99 and the 240GB version is $599.99.

The MacBook Air comes standard with 64GB, 128GB or 256GB of storage.

Top Rated Comments

Heavertron Avatar
178 months ago
How ironic that your own comment is "ill informed." From the OWC Blog itself...

"Wear Leveling technologies are able to eliminate virtually any reduction in data transfer speeds over heavy, long-term usage without dependency on less-than-effective OS TRIM management."

Read it yourself here:
http://blog.macsales.com/11900-owc-announces-mercury-aura-pro-express-6g-industrys-first-6gbs-solid-state-drives-for-2011-apple-macbook-air

Huh? I think you misunderstand my post. The blog says:

"Utilizing SandForce DuraClass technology".

Therefore my statement was correct. These drives use the SandForce controller, so have their own 'housekeeping' mechanisms, so TRIM is not required to maintain performance.
Score: 3 Votes (Like | Disagree)
ShortArc Avatar
178 months ago
What worries me about these SSD 6G drives is the power consumption spec.
Active 3W & Idle 1.2W. This I believe compares to less than .5W for idle for the stock SSD. In other words, these SSDs will drain your battery pretty quick!
Score: 3 Votes (Like | Disagree)
ShortArc Avatar
178 months ago
I hate to break up the SandForce love train, but these claims are simply not true. While wear-leveing is important in the long run, in the short run it is not what causes SSD's to slow down, and claiming that the SandForce controller's garbage collection is on par with TRIM is simply wrong.

An SSD cannot overwrite a block with data, and therefore needs to empty it before new data can be written to the block. Because of how SSD's can write to the smaller pages but can only erase blocks, the "overwrite" process involves copying all relevant pages from an old block to a new block and then filling out the rest of the blank pages in a block. This is a slow process, and is best done during idle, instead of on-demand during a write, so the industry needed to come up with a solution to this and the answer was TRIM.

This whole problem arises because of the way traditional magnetic media worked: it had no overwrite penalty, so when something was deleted, the only thing that happened was that it's entry was removed from the directory (a pointer to its actual location) while the actual bits of data were left untouched sitting in whichever block they were residing in. Again, with no overwrite penalty for magnetic media, this worked great because you could just overwrite the block when the time came and nobody was the wiser. Since this isn't true for SSD's, TRIM came along to manually clear out blank pages/blocks and consolidate what was left for faster performance. The HUGE benefit of TRIM is that OS knows which allocated pages/blocks are still being used and which can be discarded, since it is in control of file management and knows what's been deleted and what hasn't been.

SandForce and it's ilk arose because both Apple and Microsoft were a little slow implementing TRIM support in their OS's and people wanted to use SSD's in their computers as soon as they were available without waiting for Lion or Windows 7, so HD-based "garbage collection" arose as a stopgap. The problem with it is that the HD can't know which allocated blocks are still in use and which aren't, so it only does it's best to consolidate all active pages and hope for the best. You'll notice the decreased long-term optimization of SandForce when you are running a mostly full drive, because it won't have as much space to get lucky with. This is why SandForce drives come with "scratch" areas pre-cordoned off (i.e. reported capacity of 240GB despite having 256GB), because it uses that extra area for write operations and then performs a deletes what is has now learned is an inactive page/block.

SandForce puts a lot of marketing into their controller, and it is pretty fast, partly because it does a lot of compression of your data when it can (which worries me a little bit anyway when using it with a non-integrity checking file system like HFS+). But nearly full drives that are TRIM-compatible are going to stay quicker throughout the life of the drive, while others will not simply because they can't know as much about what they are trying to organize as an OS-based routine like TRIM will.

And you don't necessarily want to pay for space on your drive which you can't use: this means you're losing about 7% capacity on top of the 7% you need to leave free for the OS's maintenance routines (like on-the-fly defragging, which is also part of at least Apple's TRIM implementation, so it's actually more efficient to do both at the same time anyway). With TRIM enabled, you can reuse the scratch space for both tasks, since the OS can see both, but not with SandForce.



This is mostly a marketing claim, because Sandforce is quicker at doing the easy garbage collection that it is capable of, while it's a longer route with more components involved for the OS to get the easy consolidation commands out of the way. Thus, more efficiency means slightly faster operations with only one component involved. Conversely, the SandForce controller is incapable of doing all the things that TRIM does, but I guess you could argue that doing less is also more efficient in the short-run.


Also, there are those failure rates. If you look up the Vertex 2 reviews on any site, you'll see nothing but complaints about their failure rates, enough so that OCZ listed increased reliability as a feature of the Vertex 3 (which uses a newer generation of the SandForce controller). Is your data something you want to trust to marketing promises, especially when combined with all the aforementioned data compression going on?

aristokrat:

Thanks for your great post.
Over the last year or so I pretty much read everything you mention (in various articles, online tests, blogs, etc). Nice to see it summarized.
My only non-technical comment would be, that regardless of the "shortcomings" the SandForce controller may have, if you want a 6G SSD in you 2011 MBA now, there is no other choice!?
Also unless someone has a convincing technical arguments, I would agree that TRIM is the way to go....
Score: 1 Votes (Like | Disagree)
aristokrat Avatar
178 months ago
These drives use the SandForce controller, so have their own 'housekeeping' mechanisms, so TRIM is not required to maintain performance.
I hate to break up the SandForce love train, but these claims are simply not true. While wear-leveing is important in the long run, in the short run it is not what causes SSD's to slow down, and claiming that the SandForce controller's garbage collection is on par with TRIM is simply wrong.

An SSD cannot overwrite a block with data, and therefore needs to empty it before new data can be written to the block. Because of how SSD's can write to the smaller pages but can only erase blocks, the "overwrite" process involves copying all relevant pages from an old block to a new block and then filling out the rest of the blank pages in a block. This is a slow process, and is best done during idle, instead of on-demand during a write, so the industry needed to come up with a solution to this and the answer was TRIM.

This whole problem arises because of the way traditional magnetic media worked: it had no overwrite penalty, so when something was deleted, the only thing that happened was that it's entry was removed from the directory (a pointer to its actual location) while the actual bits of data were left untouched sitting in whichever block they were residing in. Again, with no overwrite penalty for magnetic media, this worked great because you could just overwrite the block when the time came and nobody was the wiser. Since this isn't true for SSD's, TRIM came along to manually clear out blank pages/blocks and consolidate what was left for faster performance. The HUGE benefit of TRIM is that OS knows which allocated pages/blocks are still being used and which can be discarded, since it is in control of file management and knows what's been deleted and what hasn't been.

SandForce and it's ilk arose because both Apple and Microsoft were a little slow implementing TRIM support in their OS's and people wanted to use SSD's in their computers as soon as they were available without waiting for Lion or Windows 7, so HD-based "garbage collection" arose as a stopgap. The problem with it is that the HD can't know which allocated blocks are still in use and which aren't, so it only does it's best to consolidate all active pages and hope for the best. You'll notice the decreased long-term optimization of SandForce when you are running a mostly full drive, because it won't have as much space to get lucky with. This is why SandForce drives come with "scratch" areas pre-cordoned off (i.e. reported capacity of 240GB despite having 256GB), because it uses that extra area for write operations and then performs a deletes what is has now learned is an inactive page/block.

SandForce puts a lot of marketing into their controller, and it is pretty fast, partly because it does a lot of compression of your data when it can (which worries me a little bit anyway when using it with a non-integrity checking file system like HFS+). But nearly full drives that are TRIM-compatible are going to stay quicker throughout the life of the drive, while others will not simply because they can't know as much about what they are trying to organize as an OS-based routine like TRIM will.

And you don't necessarily want to pay for space on your drive which you can't use: this means you're losing about 7% capacity on top of the 7% you need to leave free for the OS's maintenance routines (like on-the-fly defragging, which is also part of at least Apple's TRIM implementation, so it's actually more efficient to do both at the same time anyway). With TRIM enabled, you can reuse the scratch space for both tasks, since the OS can see both, but not with SandForce.

The question at this stage is, just how much more efficient is the clean-up algorithms of the SandForce chip versus OS-based TRIM?
This is mostly a marketing claim, because Sandforce is quicker at doing the easy garbage collection that it is capable of, while it's a longer route with more components involved for the OS to get the easy consolidation commands out of the way. Thus, more efficiency means slightly faster operations with only one component involved. Conversely, the SandForce controller is incapable of doing all the things that TRIM does, but I guess you could argue that doing less is also more efficient in the short-run.


Also, there are those failure rates. If you look up the Vertex 2 reviews on any site, you'll see nothing but complaints about their failure rates, enough so that OCZ listed increased reliability as a feature of the Vertex 3 (which uses a newer generation of the SandForce controller). Is your data something you want to trust to marketing promises, especially when combined with all the aforementioned data compression going on?
Score: 1 Votes (Like | Disagree)
cluthz Avatar
178 months ago
It's good that there is an aftermarket alternative to the Apple SSD,
but am I the only one that feel the standard SSD is the only thing in the MBA that isn't a bottle neck?
Score: 1 Votes (Like | Disagree)
FloatingBones Avatar
178 months ago
What worries me about these SSD 6G drives is the power consumption spec. Active 3W & Idle 1.2W. This I believe compares to less than .5W for idle for the stock SSD. In other words, these SSDs will drain your battery pretty quick!

I asked OWC to comment on the impact their high-performance SSD would have on battery life. Look on their blog for a response -- hopefully tomorrow.
Score: 1 Votes (Like | Disagree)

Popular Stories

iOS 18

Apple Releases iOS 18.5 With New Wallpaper, Screen Time Changes, Carrier Satellite Support for iPhone 13 and More

Monday May 12, 2025 10:06 am PDT by
Apple today released iOS 18.5 and iPadOS 18.5, the fifth updates to the iOS 18 and iPadOS 18 operating systems that came out last September. iOS 18.5 and iPadOS 18.5 come a little over a month after Apple released iOS 18.4 and iPadOS 18.4. The new software can be downloaded on eligible iPhones and iPads over-the-air by going to Settings > General > Software Update. The iOS 18.5 update has a...
tvOS 18 Feature

Apple Releases tvOS 18.5

Monday May 12, 2025 10:01 am PDT by
Apple today released tvOS 18.5, the latest version of the tvOS operating system. tvOS 18.5 comes a little over a month after the launch of tvOS 18.4, and it is available for the Apple TV 4K and Apple TV HD models. tvOS 18.5 can be downloaded using the Settings app on the ‌Apple TV‌. Open up Settings and go to System > Software Update to get the new software. ‌Apple TV‌ owners who have...
iPhone 17 Pro Blue Feature Tighter Crop

WSJ: Apple Weighing Price Hikes for iPhone 17 Lineup Without Blaming Tariffs

Monday May 12, 2025 3:36 am PDT by
Apple is considering raising prices for its upcoming iPhone 17 models set to release this fall, according to people familiar with the matter cited by The Wall Street Journal. The company reportedly aims to pair the potential price hikes with new features and design changes to justify the increased cost to consumers, rather than attributing them to U.S. tariffs on goods from China. The...
iOS 18

iOS 18.5 Expected This Week With These New Features

Monday May 12, 2025 7:20 am PDT by
Following more than a month of beta testing, Apple is expected to release iOS 18.5 to the general public this week. While the software update is relatively minor, it still includes a handful of new features and changes for iPhones. Below, we recap everything new in iOS 18.5. Pride Wallpaper Apple recently announced its 2025 Pride Collection, including a new Apple Watch band, watch face,...
macOS Sequoia Feature

Apple Releases macOS Sequoia 15.5

Monday May 12, 2025 10:10 am PDT by
Apple today released macOS Sequoia 15.5, the fifth major update to the macOS Sequoia operating system that launched last September. macOS Sequoia 15.5 comes a little over a month after the launch of macOS Sequoia 15.4. Mac users can download the ‌‌‌macOS Sequoia 15.5‌‌‌ update through the Software Update section of System Settings. It is available for free on all Macs able to run ...
Mayday Calendar

Apple Acquisition Hints at Upgraded Calendar App on iOS 19 or Beyond

Friday May 9, 2025 9:13 am PDT by
Apple acquired Canadian startup Mayday Labs in April 2024, according to a European Commission listing, spotted by French blog MacGeneration. The acquisition had not received widespread attention from tech publications until now. Apple is legally required to report certain acquisitions to the European Commission, under the terms of the EU's Digital Markets Act. Mayday Labs founder Jeremy...
top stories 2025 05 10

Top Stories: iOS 18.5 Release Imminent, iPhone Rumors for 2025 and Beyond, and More

Saturday May 10, 2025 6:00 am PDT by
With Apple's developer conference where it will show off iOS 19 just a month away, the company is wrapping up work on iOS 18.5 ahead of an imminent release to deliver a few new features and updates. This week also saw a number of iPhone-related rumors, encompassing not only this year's iPhone 17 lineup but also Apple's plans for 2026 and 2027, even as Apple's Eddy Cue suggested AI could make ...