Intel Aggressively Dropping Power Consumption in Future Notebook Processors

intel2
During Intel's annual investor relations event earlier this week, Intel outlined a fundamental shift in its future processor designs that will likely impact Apple's future notebooks.

Until now, the bulk of Intel's notebook chips are design to draw around 35 watts of power--many of its notebook parts are lower, and some are higher, but 35 watts is the center point for Intel's portable lines. Going forward, however, the new center point will be in the 10 to 15 watt range.

Intel's future roadmap for notebook processors will now target a much lower power draw then present chips. That means ultra-low voltage processors like those found in the MacBook Air will become the norm instead of a specialty product.

mbathin
Intel seems to be clearly feeling the pressure of the growing smartphone and tablet market, According to the Financial Times, Otellini describes a future of PCs evolving into "higher performance mainstream-priced, touch-enabled device that would not compromise on features such as thinness, instant-on capabilities, permanent internet connectivity and all-day battery life." Apple's notebook line will certainly benefit from these advances.

Intel and Apple have had a close relationship since Apple switched over to Intel's processors several years ago. Apple has frequently been the first computer manufacturer to ship the latest Intel technologies. In a Reuters report yesterday, Intel said they work very closely with Apple and that Apple even influences their roadmap:

"We work very closely with them and we're constantly looking down the road at what we can be doing relative to future products. I'd go as far as to say Apple helps shape our roadmap," Kilroy said.

Popular Stories

Generic iOS 18

Apple Seeds Second Release Candidate Versions of iOS 18.2 and More With Genmoji, Image Playground and ChatGPT Integration

Monday December 9, 2024 10:06 am PST by
Apple today seeded the second release candidate versions of upcoming iOS 18.2, iPadOS 18.2, and macOS 15.2 updates to developers and public beta testers for testing purposes, a week after releasing the first RCs. The first iOS 18.2 RC had a build number of 22C150, while the second RC's build number is 22C151. Release candidates represent the final version of beta software that's expected to see a ...
iOS 18

Here Are Apple's Full Release Notes for iOS 18.2

Thursday December 5, 2024 11:48 am PST by
Apple seeded the release candidate version of iOS 18.2 today, which means it's going to see a public launch imminently. Release candidates represent the final version of new software that will be provided to the public should no last minute bugs be found, and Apple includes release notes with the RC launch. The iOS 18.2 release notes provide a look at all of the new features that are coming...
iPhone 17 Slim Feature

iPhone 17 'Air' Expected to Be ~2mm Thinner Than iPhone 16 Pro

Friday December 6, 2024 4:07 pm PST by
In 2025, Apple is planning to debut a thinner version of the iPhone that will be sold alongside the iPhone 17, iPhone 17 Pro, and iPhone 17 Pro Max. This iPhone 17 "Air" will be about two millimeters thinner than the current iPhone 16 Pro, according to Bloomberg's Mark Gurman. The iPhone 16 Pro is 8.25mm thick, so an iPhone 17 that is 2mm thinner would come in at around 6.25mm. At 6.25mm,...
New Things Your iPhone Can Do in iOS 18

20 New Things Your iPhone Can Do in iOS 18.2

Friday December 6, 2024 4:42 am PST by
Apple is set to release iOS 18.2 in the second week of December, bringing the second round of Apple Intelligence features to iPhone 15 Pro and iPhone 16 models. This update brings several major advancements to Apple's AI integration, including completely new image generation tools and a range of Visual Intelligence-based enhancements. There are a handful of new non-AI related feature controls...
iPhone SE 4 Single Camera Thumb 3

iPhone SE 4 Said to Feature 48MP Rear Lens, 12MP TrueDepth Camera

Monday December 9, 2024 4:48 am PST by
Apple's forthcoming iPhone SE 4 will feature a single 48-megapixel rear camera and a 12-megapixel TrueDepth camera on the front, according to details revealed in a new Korean supply chain report. ET News reports that Korea-based LG Innotek is the main supplier of the front and rear camera modules for the more budget-friendly ~$400 device, which is expected to launch in the first quarter of...
airpods pro 2 gradient

AirPods Pro 3 Expected Next Year: Here's What We Know

Thursday November 28, 2024 3:30 am PST by
Despite being released over two years ago, Apple's AirPods Pro 2 continue to dominate the wireless earbud market. However, with the AirPods Pro 3 expected to launch sometime in 2025, anyone thinking of buying Apple's premium earbuds may be wondering if the next generation is worth holding out for. Apart from their audio and noise-canceling performance, which are generally regarded as...
Apple MacBook Pro M4 hero

MacBook Pros With OLED Displays Won't Have a Notch, Roadmap Shows

Monday December 9, 2024 7:36 am PST by
Apple plans to remove the notch from the MacBook Pro in a few years from now, according to a roadmap shared by research firm Omdia. The roadmap shows that 14-inch and 16-inch MacBook Pro models released in 2026 will have a hole-punch camera at the top of the display, instead of a notch. It is unclear if there would simply be a pinhole in the display, or if Apple would expand the iPhone's...
vipps nfc tap to pay iphone

World's First Apple Pay Alternative for iPhone Launches in Norway

Monday December 9, 2024 1:28 am PST by
Norwegian payment service Vipps has become the world's first company to launch a competing tap-to-pay solution to Apple Pay on iPhone, following Apple's agreement with European regulators to open up its NFC technology to third parties. Starting December 9, Vipps users in Norway can make contactless payments in stores using their iPhones. The service initially supports customers of SpareBank...

Top Rated Comments

Hellhammer Avatar
177 months ago
Wattage ratings for CPUs are not power ratings but TDP ratings for OEMs to build appropriate cooling solutions.
They are all we got and pretty much all we need. Idle power usages have gone down every year but the TDP often affects the idle usage too. The TDP determines the suitability of a certain chip. While MBA could run a 130W when it's idling, the CPU would shut itself down when actually doing something since the cooling isn't appropriate.

As the mainstream CPUs are now 35W, that means you can't build a small, thin laptop and put one of those in it without heat issues. Clearly, Intel wants reduce the footprint of laptops and the only way they can do that is to produce more efficient CPUs with lower TDP.

Intel has their Xscale ARM before sold the whole division to Marvell few years ago, Intel doesn't make ARM cpu anymore.

My point was, Intel target power is 10-15 watts while ARM is less than 1 watts.

I'm sure ARM will not take over Intel in Desktop space anytime soon, but the opposite is still true. I still wonder who will won the next cpu war: slim down a fat architecture or beef up a slime design.
I remember reading an article about ARM vs Intel what stated that the possible issue with ARM is that power consumption and performance don't scale up evenly. ARM seems to work great in ~1W areas but its performance might be horrible when you start increasing the frequency and core count and thus the TDP (i.e. it does not scale up. E.g. you double the clock speed but your TDP becomes 10 times as big). Especially if the architecture is designed for 1W areas.
Score: 3 Votes (Like | Disagree)
toddybody Avatar
177 months ago
There will come a time (sooner than you think) when all that intensive work will *not* demand a so-called "higher-end" processor

Sorry, but this seems like a huge contradiction.

If there exists "intensive work", that is considered more processing intensive than other applications, wouldnt it then require a higher echelon of processors as opposed to less powerful solutions?

Are you saying that bottom end processors of the future will totally overkill the ever evolving complex and intensive applications of the time...seems like rubbish to me.

The only way your comment would be close to accurate, is if software development stands still. :rolleyes:
Score: 3 Votes (Like | Disagree)
Hellhammer Avatar
177 months ago
There will come a time (sooner than you think) when all that intensive work will *not* demand a so-called "higher-end" processor, or (and more likely), that those high-end processors will require a fraction of the power they require today. Looking it what the iPad 2 is capable of today, it's pretty astounding.
The power consumption has actually gone up. With Pentium 4s for instance, the maximum TDP was 115W and the CPUs we have now have maximum TDP of 130W. iPad is nothing else but a brick when it comes intensive tasks such as true video editing (i.e. more than cut&paste that you can do with iMovie) and 3D rendering.

You won't see high performance CPUs that require only a fraction of power anytime soon. There is, and will always be, a market for the fastest CPUs, even if it means more heat and higher power draw.

Could this "shift in design" partially reflect the "3D" re-architecture of transistors? Not to be naive in assuming that they will have their cake and eat it too...but I dont think this lower consumption will always result in performance below current LV/ULV chips.

Im hoping this will be a general evolution in efficiency (current performance at lower TDPs)
The Tri-Gate will transistors definitely help. I didn't mean that lowering the TDP would cause the CPUs to be slower than their predecessors ;) What it can cause, however, is that the performance upgrade will be smaller than what it would have been if the TDPs stayed the same.

Most likely, Intel's approach will take some time so this doesn't mean that Ivy Bridge mobile CPUs will all be 10-15W. Like I said, Intel will probably offer more lineup for different usages. High-performance laptops with higher TDP and then mainstream laptops with less CPU power but longer battery life etc. Quite similar to what we have now but might be that the TDPs of all CPUs will come down (e.g. 15W for mainstream, 25W performance etc).

remember the current 65 watts Quad Core CPU (similar to the ones in iMac) used to cost premium price than the 95watts last year compared to now
LV CPUs still cost a nice premium over the SV chips.
Score: 3 Votes (Like | Disagree)
Hellhammer Avatar
177 months ago
We will still see 35W and 45W mobile CPUs though. Reducing the power consumption means slower performance and not everyone is ready to sacrifice performance for better battery life and stuff. For an average user, even a 10W Atom is sufficient so widening the lineup of low-voltage CPU sounds reasonable.

To be honest, I wouldn't mind a low-power MBA with +10 hours of battery.
Score: 3 Votes (Like | Disagree)
toddybody Avatar
177 months ago
Fantastic News. Glad to see their roadmap is focused on such principles.

nVidia (Kepler, Maxwell) and AMD are also making incredible assertions about the GFLOPS/watt efficiencies in their next two generations of GPUs.

Even if battery tech increases slowly, the culmination of these things will mean some great products for us consumers :)
Score: 3 Votes (Like | Disagree)
Rodimus Prime Avatar
177 months ago
I've read about the ARM since it's first use in the Newton. and in my understanding, the ARM is a pure RISC design, a very small core built with efficiency in mind. They don't have branch prediction and deep execution pipe like x86 processor, limiting their effective power in desktop environment. It's like comparing a regular 3L V6 engine with a 1.6 turbo V4 running at 11,000 RPM, both could achieve about the same HP. But the V6 can be push more ahead burning fuel and the V4 will have better fuel efficiency at low speed. While ARM is already push to it's limit, core multiplication and expending the base design of ARM can obliterate those limit in near future.

The interesting part come from Intel, saying right now ARM mobile CPU is growing twice as fast as the Moore Law.

I could see why ARM would be going twice as fast as Moore for little while. My guess is because it only more recently been really developed and pushed so it is more or less playing catch up and using tricks and technology learned from the other CPU lines over the years. I am willing to bet it will slow down and drop to moore law speed after a while.

Really don't understand what you mean. Are you saying work will become less intensive, or processors will become faster+more-energy efficient? or are you saying software will become multi-threaded allowing it to leverage multiple energy-efficient cores to get performance, making it both fast and less energy?

He is just repeating Apple catch phases and his church of Apple worship.

I will tell you multithreading/multicore coding is hell to do in programming and a huge pain in the ass to get it all working correctly because so many more things can go wrong plus you have to make sure they are not trying to write or change the same set of data at the same time. Single threading is so much easier to code and design for than multi threading.
Score: 2 Votes (Like | Disagree)